Short Cellulose Nanofibril/polyvinyl Alcohol Nanocomposite Fibers

نویسندگان

  • Jun Peng
  • Craig Clemons
  • Ronald Sabo
  • Tom Ellingham
  • Lih-Sheng Turng
چکیده

Short cellulose nanofibrils (SCNF) were investigated as a reinforcement for polyvinyl alcohol (PVA) fibers. SCNF fibers were mechanically isolated from hard wood pulp after enzymatic pretreatment. Various levels of SCNF were added to PVA and gel-spun into continuous fibers. The molecular orientation of PVA was affected by a combination of wet drawing during gel spinning and post-hot-drawing at a high temperature after drying. A maximum total draw ratio of 27 was achieved with various SCNF contents investigated. The PVA crystal orientation increased when small amounts of SCNF were added, but decreased again as the SCNF content was increased above about 2 or 3%, likely due to SCNF percolation resulting in network formation that inhibited alignment. SCNF fillers were effective in improving PVA fiber tensile properties (i.e., ultimate strength and elastic modulus). Shifts in the Raman peak at ~1095 cm, which were associated with the C–O–C glycosidic bond of SCNF, indicated good stress transfer between the SCNF and the PVA matrix due to strong interfacial hydrogen

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and modeling investigation of cellulose nanocrystals polymer composite fibers

Chen, Si. Ph.D., Purdue University, May 2015. Experimental and Modeling Investigation of Cellulose Nanocrystal Polymer Composite Fibers. Major Professor: R. Byron Pipes. Cellulose nanocrystals (CNCs) are a class of newly developed and sustainable nanomaterial derived from cellulose-based materials such as wood. There have been substantial research efforts to utilize these materials as reinforci...

متن کامل

Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications

Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reduci...

متن کامل

Compression properties of polyvinyl alcohol--bacterial cellulose nanocomposite.

Despite the established use of total joint replacement for the treatment of advanced degeneration of articular cartilage, component loosening due to wear and osteolysis limits the lifespan of these joint prostheses. In the present study, nanocomposites consisting of poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) nanofibers were investigated as possible improved cartilage replacement mat...

متن کامل

Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization.

Cellulose nanocrystals (CN) were used to reinforce nanofibers in composite mats produced via electrospinning of poly(vinyl alcohol) (PVA) with two different concentrations of acetyl groups. Ultrathin cross-sections of the obtained nanocomposites consisted of fibers with maximum diameters of about 290 nm for all the CN loads investigated (from 0 to 15% CN loading). The electrospinning process di...

متن کامل

Dielectric Behavior Characterization of a Fibrous-ZnO/PVDF Nanocomposite

This study is focused on forming a fibrous-zinc oxide/ polyvinylidine fluoride (ZnO/PVDF) nanocomposite and characterizing its dielectric behavior. The nanocomposite is prepared in two steps. First, a network of nanoscale diameter ZnO fibers is produced by sintering electrospun PVA/Zinc Acetate fibers. Second, the ZnO fibrous nonwoven mat is sandwiched between two PVDF thermoplastic polymer fil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013